Бактериородопсин для хранения данных

Страница 1

Молекулярная электроника определяется как кодирование (запись), обработка и распознавание (считывание) информации на молекулярном и макромолекулярном уровне. Основное преимущество молекулярного приближения заключается в возможности молекулярного дизайна и производства приборов "снизу вверх", т.е. атом за атомом или фрагмент за фрагментом, - параметры приборов определяются органическим синтезом и методами генной инженерии. Двумя общепризнанными достоинствами молекулярной электроники являются значительное уменьшение размеров устройств и времени срабатывания (gate propagation delays) логических элементов. В принципе, темпы развития компьютерных технологий таковы, что размеры полупроводниковых чипов согласно закону Мура приблизятся к молекулярным аналогам около 2030 года, что, однако, потребует значительных финансовых затрат. Выходом из положения может стать гибридная молекулярная и полупроводниковая технология, первым коммерческим успехом которой стали жидкокристаллические дисплеи (LCD). Биоэлектроника, являющая разделом молекулярной электроники, исследует возможность применения биополимеров в качестве управляемых светом или электрическими импульсами модулей компьютерных и оптических систем (Birge R.R., 1999). Основное требование к вероятным кандидатам среди большого семейства биополимеров состоит в том, что они должны обратимо изменять свою структуру в ответ на некое физическое воздействие и генерировать, по крайней мере, два дискретных состояния, отличающихся легко измеряемыми физическими характеристиками (например, спектральными параметрами). Значительный интерес в связи с этим представляют белки, основная функция которых связана с трансформацией энергии света в химическую в различных фотосинтетических системах. Наиболее вероятным кандидатом среди них является светозависимый протонный насос - бактериородопсин (БР) из галофильного микроорганизма Halobacterium salinarum (ранее Halobacterium halobium ), открытый в 1971 году (Oesterhelt D., Stoeckenius W., 1971). Бактериородопсин - ретиналь-содержащий генератор протонного транспорта представляет собой трансмембранный белок в 248 аминокислот с молекулярным весом 26 кДа, пронизывающий мембрану в виде семи a-спиралей; N- и C-концы полипептидной цепи находятся по разные стороны цитоплазматической мембраны: N-конец обращен наружу, а C-конец - внутрь клетки (рис.1, 2).

http://www.bestreferat.ru/images/books/171/paper/27/34/7163427.png Рис.1.

Модель БР в элементах вторичной структуры. Выделены аминокислоты, участвующие в протонном транспорте: кружками остатки аспарагиновой кислоты, квадратом остаток аргинина. С Lys-216 (К-216) образуется основание Шиффа (SB).Стрелкой показано направление протонного транспорта.

Хромофор БР - протонированный альдимин ретиналя с e - аминогруппой остатка Lys-216 размещен в гидрофобной части молекулы. После поглощения кванта света в ходе фотоцикла происходит изомеризация ретиналя из all -E в 13Z-форму. Белковое микроокружение хромофора может рассматриваться как рецептор с субстратной специфичностью для all -E /13Z-ретиналя, который катализирует эту изомеризацию при комнатной температуре. Кроме того, часть аминокислот ответственна за подавление изомеризаций, отличных от all -E /13Z, например от all -E- к 7Z-, 9Z-, 11Z-ретиналю. Остальная часть полипептидной цепи обеспечивает канал протонного транспорта или экранирует фотохромную внутреннюю группу от влияний внешней среды. Взаимная топография образованных полипептидной цепью БР элементов вторичной структуры после поглощения молекулой хромофора кванта света изменяется, в результате чего формируется канал трансмембранного переноса протонов из цитоплазмы во внешнюю среду. Однако молекулярный механизм светозависимого транспорта до сих пор неизвестен.

Страницы: 1 2 3

Интересное из раздела

Гомоферментативные молочнокислые бактерии
Гомоферментативное молочнокислое брожение, в основе которого лежит гликолитический путь разложения глюкозы, является единственным способом получения энергии для группы эубактерий, которые ...

Эволюция биологических механизмов запасания энергии
Использование внешних энергетических ресурсов для совершения полезной работы - универсаль­на функция всех живых систем. Столь же непреложным фактом является то обстоятельство, что химия со ...

О тождественности уровней
Обобщение теории относительности возможно на основе предположения об общей физической природе материи и энергии; исключительность скорости света при этом преодолевается, парадоксальным обр ...